
Week 6 - Friday

 What did we talk about last time?
 Networking

 The last class was a high-level overview of networking
 Now, we'll look at how to turn those ideas into code
 The most basic element of the networking arsenal is the socket
 A socket is half of a tw0-way connection between hosts
 We create a socket with a call to socket()

 Returns an int, essentially a file descriptor
 Is similar to calling open() on a file
 We can call read() and write() on socket file descriptors

int socket (int domain, int type, int protocol);

 Computers on the Internet have addresses, not names
 Google.com is actually 74.125.67.100
 Google.com is called a domain
 The Domain Name System or DNS turns the name into an

address

 Old-style IP addresses are often written in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That's a total of 2564 = 4,294,967,296 addresses
 But there are 8 billion people on earth…

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person’s body on Earth
 Will it be enough?!

 domain
 What the socket will be used for
 Typical values are IPv4, IPv6, or

local communication
 type
 Determines the transport layer
 Usually TCP or UDP for this class

 protocol
 Usually not used and set to 0
 Can be used for special raw

sockets used for packer sniffers

int socket (int domain, int type, int protocol);

Field Constant Purpose

domain

AF_INET IPv4 addresses

AF_INET6 IPv6 addresses

AF_LOCAL Unix domain socket for IPC

AF_NETLINK Netlink socket for kernel messages

AF_PACKET Raw socket type

type

SOCK_STREAM Byte-stream communication, for TCP transport

SOCK_DGRAM Fixed-size messages, for UDP transport

SOCK_RAW Raw data that is not processed by transport layer

protocol
IPPROTO_RAW IP datagrams without transport-layer processing

ETH_P_ALL Ethernet frames without network-layer processing

Purpose Call

IPv4 socket for TCP socketfd = socket (AF_INET, SOCK_STREAM, 0);

IPv6 socket for TCP socketfd = socket (AF_INET6, SOCK_STREAM, 0);

IPv4 socket for UDP socketfd = socket (AF_INET, SOCK_DGRAM, 0);

IPv6 socket for UDP socketfd = socket (AF_INET6, SOCK_DGRAM, 0);

Raw socket for sniffing
unprocessed Ethernet frames

socketfd = socket (AF_PACKET, SOCK_RAW, htons (ETH_P_ALL));

 Different data structures are needed to specify addresses
depending on what kind of networking is being done

 Since C doesn't have inheritance, structs with the same size are
treated interchangeably and then cast to each other when
appropriate

 One of these is struct sockaddr, which is 16 bytes in size

// generic address structure
struct sockaddr {
sa_family_t sa_family; // two bytes: AF_INET, etc.
char sa_data[14];

};

 The structure for holding IPv4 addresses is identical in size to struct sockaddr
// IPv4 address structure
struct sockaddr_in {

sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};
struct in_addr {
in_addr_t s_addr; // in_addr_t is an alias for uint32_t

};

Type struct sockaddr

Fields sa_family sa_data

Data 02 00 00 50 5d b8 d8 22 00 00 00 00 00 00 00 00

Fields sin_family sin_port sin_addr sin_zero

Type struct sockaddr_in

 IPv6 addresses are longer and consequently require bigger (and
stranger looking) structs

// IPv6 address structure
struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr; // IPv6 addresses are 128-bit
uint32_t sin6_scope_id;

};

struct in6_addr {
union {

uint8_t __u6_addr8[16]; // aliased as s6_addr
uint16_t __u6_addr16[8]; // aliased as s6_addr16
uint32_t __u6_addr32[4]; // aliased as s6_addr32

} __u6_addr;
};

 The good news is that you (usually) don't have to muck around in
the parts of the structs that represent actual IP addresses
 These are bytes laid out in specific patterns
 Not user-friendly representations like 74.125.67.100
 Functions handle the translation for you

 The bad news is that some values inside of these structs are
sensitive to endianness
 Which byte is considered the most significant in a machine
 When networking, important data like ports and addresses are sent

between machines with potentially different endianness

 Rather than try to keep straight what the endianness of our
machine and the endianness of the network is, we use a family of
functions:
 hton: host to network endianness
 ntoh: network to host endianness
 They come in l (long) versions (for 32-bit integers) or s (short) versions

(for 16-bit integers)

uint32_t htonl (uint32_t hostlong); // 32-bit from host to network
uint16_t htons (uint16_t hostshort); // 16-bit from host to network
uint32_t ntohl (uint32_t netlong); // 32-bit from network to host
uint16_t ntohs (uint16_t netshort); // 16-bit from network to host

 DNS converts a host name to an IP address
 The getaddrinfo() function lets us get a linked list of

matching addresses

 The only annoying bit is that we have to fill out a hints structure
 A utility function freeaddrinfo() is provided to free the

linked list structure when done with it

int getaddrinfo (const char *name, const char *service,
const struct addrinfo *hints, struct addrinfo **results)

void freeaddrinfo (struct addrinfo *info);

 The result of getaddrinfo() is stored into the pointer
given by the last argument

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
char *ai_canonname;
struct sockaddr *ai_addr; // Pointer to address we need
struct addrinfo *ai_next; // Pointer to next addrinfo in linked list

};

struct addrinfo hints, *server_list = NULL, *server = NULL;
memset (&hints, 0, sizeof (hints));
hints.ai_family = AF_INET; // IPv4
hints.ai_socktype = SOCK_STREAM; // Byte-streams (TCP)
hints.ai_protocol = IPPROTO_TCP; // TCP
assert (getaddrinfo (hostname, "http", &hints, &server_list) == 0); // Get addresses

for (server = server_list; server != NULL; server = server->ai_next)
{

if (server->ai_family == AF_INET) // Only take IPv4
{

// Cast to IPv4 socket
struct sockaddr_in *addr = (struct sockaddr_in *)server->ai_addr;
printf ("IPv4 address: %s\n", inet_ntoa (addr->sin_addr));

}
}

freeaddrinfo (server_list);

 Here's a visualization of the addrinfo and sockaddr structs that might come back from getaddrinfo()

struct addrinfo

ai_flags …

ai_family AF_INET

ai_socktype SOCK_STREAM

ai_protocol IPPROTO_TCP

ai_addrlen 4

ai_canonname …

ai_addr

ai_next

struct addrinfo

ai_flags …

ai_family AF_INET6

ai_socktype SOCK_STREAM

ai_protocol IPPROTO_TCP

ai_addrlen 16

ai_canonname …

ai_addr

ai_next NULL

struct sockaddr_in

sin_family AF_INET

sin_port 80

sin_addr 93.184.216.34

sin_zero 0

struct sockaddr_in6

sin6_family AF_INET6

sin6_port 80

sin6_flowinfo …

sin6_addr
2606:2800:220:1:
248:1893:25C8:1946

sin6_scope_id …

 Adapt the code on
the previous slide:
 Read a host or IP

address from the user
 Read a service or port

name from the user
 Print out the

resulting IP addresses

Port Name Service Port Name Service

21 FTP Insecure file transfer 110 POP3 POP email access

22 SSH Secure shell 123 NTP Time synchronization

23 Telnet Insecure remote access 143 IMAP IMAP email access

25 SMTP Email delivery 194 IRC Internet chat service

53 DNS IP address lookup 389 LDAP Authentication

67 DHCP IP address assignment 443 HTTPS Secure web page

68 DHCP IP address assignment 530 RPC Remote procedure call

80 HTTP Web page 631 IPP Internet printing

88 Kerberos Authentication 993 IMAPS Secure IMAP access

Note the following common port names and services:

 TCP socket programming

 Work on Assignment 4
 Due next Monday

 Start on Project 2!
 Read section 4.5

	COMP 3400
	Last time
	Questions?
	Assignment 4
	Exam 1 Post Mortem
	Sockets
	Sockets
	IP addresses
	IPv4
	IPv6
	Details for socket()
	Example calls to socket()
	Networking data structures
	IPv4 socket addresses
	IPv6 socket addresses
	Good news and bad news
	Endian conversion
	Getting addresses from a host name
	The addrinfo struct
	Getting address example
	Confusing structs!
	Programming practice
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

